Current Events in Biology (6 Highlights)

Share on tumblr
Share on facebook
Share on linkedin
Share on twitter
Share on stumbleupon
Share on email
Share on pinterest

Current Events in Biology (6 Highlights)

Biology is the study of living things; generally, this refers to plants and animals, though biological research takes an interest in microorganisms as well. It is primarily concerned with physiochemical processes, and it endeavors to research and gather scientific knowledge related to the field of living things.

Biology has several subsets, however all of the branches relate to the basic universal principles in the field. The study of plants is referred to as botany while the study of animals is zoology. The study of the structure of organisms is called morphology, while the study of the body functions is called physiology.

No matter which subset appeals to you, all of biology approaches its given niche in a way that focuses on the fundamentals of life. Molecular biology, for instance, focuses on the chemical composition and energy changes that happen in the many chemical structures that constitute an organism.

Biology is also one of the most exciting fields of study. Scientists make new discoveries and scientific breakthroughs on a daily basis. Let’s take a look at the 6 most interesting current events in biology:

Current Events in Biology: Bark Beatles Booming

When we think of threats to the environment, we forget the environment itself is a threat. In other words, coexisting creatures and living things can cause problems for one another. A number of trees in Europe and North America are dying, for example, due to a pesky neighbor. Bark beetles are the source of the sorrow, and they are known to do these sorts of things. As a whole, the population of bark beetles spikes rapidly only to decline over the following few years. Lately, they’re booming even bigger than ever. Scientists think climate change may be to blame.

Bark beetles live to devastate. Climate change is suspected of speeding up the eating. When bark beetles sense warmer climates, they assume the need to eat faster due to summer arriving. Germany, as well as most of North America, is seeing the infestation grow to unreasonable levels. In fact, bark beetles in Central Europe destroyed nearly 40 million cubic meters of wood. Losses of that much timber are unfounded. To find out more, a study aimed to uncover the population boom in bark beetles.

Climate Change Isn’t Coming, It’s Here

How do scientists plan to rid forests of the bark beetle? It’s not that simple. In fact, the goal is not to reduce the population, at least not right now. Examining the issue is key at this point in time. Scientists know about the bark beetle, and have for years. The point of a study in the current issue of Trends in Ecology and Evolution is to learn more about the population boom. A normal population boom in bark beetles last months. Lately, due to climate change, the boom is lasting years. The rapid growth of bark beetle populations is detrimental to forests all over the globe. Because of this, scientists are pressed for an answer.

It’s a great example of why climate change is not a future issue. The threat of global temperatures rising in the oceans poses a risk to everyone and everything here in 2019. Plans for the future are good, but would have done much more good about 25 years ago. In order to uncover every little detail behind the bark beetle’s population boom, scientists look at relationships between temperature and population. This was not a problem a decade ago. For that reason, climate change poses yet one more risk to biological life on Earth. It’s a narrative central to many current events in Biology.

Current Events in Biology: The Relationship Between Cerebellar Degeneration and the Perception of Verticality

Researchers involved in a recent study sought to prove that the cerebellum has an impact on our perception of vertical images. When people perceive verticality, this sensory data does not just come from one source, but a combination of sources. A lot of research on different species of animals has indicated that the cerebellum plays a key role in the perception of verticality in sentient beings.

However, this assumption has not been questioned, as these researchers found that the degradation of the human cerebellum due to disease did not affect one’s perception of verticality.

In the experiment, researchers compared control groups (of various ages) with a group with cerebellar degeneration. Individuals from each group saw the image of a rotated bar. The researchers then instructed the participants to return the bar to a vertical position. In their peripheral vision, dots rotated in a certain patterns to distract them from the task. By the end of the experiment, the participants with cerebellar degeneration did not underperform as expected.

Current Events in Biology: Coherent Mapping During Long Timescales 

In order to remember the location that an event has happened, place cells in the hippocampus must encode the location across long timescales. However, in most instances, place cells experience instability caused by random reorganization in the place fields between events, making the process more of a challenge. Instability is a tangible variable in the lives of living things. Any little variation can really send us for a loop. The same goes for other living things, like mice and mammals.

It is evident that some causes of instability result from rotation of place fields in a coherent manner, as well as random reorganization. A calcium imaging was performed using mice as the test subjects. The experiment explored two different areas with different visual cues for eight days. The two fields rotated at random between sessions, and then later connected with each other, giving researchers the ability to study the cue rotations. This enabled them to learn how new information gets integrated from the environment and how the passage of time affects the spatial consistency of place. The results were very promising.

Going with the Flow

Each session rotated the two fields, and allowed the time and environment to be completely random. The main finding came down to the response to the rotations. Scientists found that coherent rotations of the maps in a singular arena dominated the results. Not only that, but their effect lasted a little less than a week after the rotation. This means that the place-field maps’ rotation is not matching the arena rotation. Mice were staying flexible, in order to deal with the change. Because the maps were flexible, the mice responded as such. This allows them to act similarly in different scenarios, despite the actual shape and connecting points. Change was handled extremely well, and the hippocampus stayed consistent over long periods of time. It suggests, in the end, that instability comes from coherent rotation, but that the response comes directly from individual understanding of dealing with change.

Current Events in Biology: Motion by Biological Organisms Being an Innate Perceptual Mechanism

Perceptual recognition shared by a given species guides collective behavior. In one experiment, researchers focus on the shoaling in certain kinds of fish. It is not easy for researchers to distinguish between these precise sensory cues and normal social behavior in a species. However, researchers have overcome this obstacle with the help of the zebrafish.

The researchers quickly realized that some of the peculiarities in a specific movement worked as sailing prompts for other animals. Using virtual reality, they witnessed individual fish shoaling for long hours, their movements imitating those of the zebrafish. Over time, the movements of the fish evolved, even for those raised in isolation.

These researchers discovered that zebrafish shoal autonomously, leaving no evidence of reciprocal choreography. The results reveal that at an individual level, perceptions that came naturally were a product of social recognition. In other words, affiliation provides access to the mental capabilities to respond to various scenarios.

Interactions between specimens of the same or similar species are important for their survival. The results indicate that neuronal links do exist to encode relevant information. However, they also show causal roles for social responsibilities, like social recognition, relations, and mating. The modulators in the neurons such as tachykinin, serotonin, and oxytocin govern the behaviors among the species. They also provide an outstanding example of the regulation of social relations, showing the capability to study critical social norms in certain types of organisms.

Behaviors are sparked through and governed by specific triggers that are both brief nature and critical for social interactions. The pheromones which govern inborn behaviors via well defined olfactory circuits are just one of many prime examples.  Another example is Drosophila Melanogaster, the pheromone that activates the sensory neurons and implicates the olfactory receptor.

Current Events in Biology: Coding Of RNA Expression On Genes

Extensive non-coding RNAs have always worked in the control of gene expression at the development stages. Recently, scientists carried out a survey investigating RNA expression and function during drosophila embryogenesis. This experiment looked at multiple stages of the process, including nuclear localization, genetic backgrounds, and tissue specificity.

The results indicated virtually two times the previously recorded number of RNAs displayed at these developmental stages. RNA ranges are always positively related to their common genes, which contain very little transcriptional interference.

Making use of fluorescent hybridization, they have reported the expression of 15 new RNAs. Deletions in two RNAs yields change in a small number of genes, implying that they fine-tune the expression of the non-essential genes. Various RNAs also contain a unique expression showing rigidity in a given population. The elements with variation between genetic traits are, therefore, an important to factor to differentiate between fast evolving RNAs and non-essential roles.

Like many other examples, RNAs generally go through transcription by RNA polymerase. In this case, they might get spliced, or capped. This is in contrast to protein-coding genes, which undergo a different process.

In most instances, unique expression trends result in their work. This can suggest bystander transcription for the limited tissue-unique coding of protein genes. The human genome has facilitated many studies, indicating genetic differences and disrupting RNA whose gene traits are specific.

However, due to there low stability of many RNAs, they represent a strong argument against possible function of the RNA molecule. Even if it may not grow to high levels, the transcription of some RNAs may affect the expression of neighboring genes.

Current Events in Biology: Foraging in Bats

When animals are observed feeding in large numbers, this is generally assumed to be an example of social foraging. However, the reasons and causes of foraging in these instances can be difficult to determine. For example, a group of animals might have collectively searched for a good sight to feed, or perhaps they began following a leader. In other cases, animals individually find a certain feeding site. Researchers then observe these animals in large numbers and assume that they worked collectively.

Differentiating between these causes and intentions is important, because they can have vastly different behavioral implications. In the first two examples above, the animals are generally working together, but in the last example, the animals are all working in direct competition. Thankfully, researchers developed the following experiment to differentiate between these behaviors:

“Using novel miniature sensors, we recorded GPS tracks and audio of five species of bats, monitoring their movement and interactions with conspecifics, which could be inferred from the audio recordings. We examined the hypothesis that food distribution plays a key role in determining social foraging patterns. Specifically, this hypothesis predicts that searching for an ephemeral resource (whose distribution in time or space is hard to predict) is more likely to favor social foraging than searching for a predictable resource.”

The Results

The experiment showed that the foraging habits of the bats differed based on the location and the availability of resources. Ephemeral resources caused bats to change their feeding sites. It also caused them to vary the amount of time that they spent at individual sites. In direct contrast, bats who fed on more predictable resources showed preference for specific feeding sites on a nightly basis. The results suggest that the predictability of resources influences the costs and benefits of social foraging.

The researchers compared the foraging responses of five different species. Based on past experiments, the researchers knew that these species practiced unique foraging styles. They wanted to conduct the experiment in this way so that no one method of resource consumption would be given priority. Generally, bats that relied on ephemeral resources hunted in groups. Bats that foraged for fished communicated regularly with conspecifics during the hunt, while many other bats did not. The researchers also noted that the bats never communicated with each other during the commute. They only began communicating once they had reached the desired feeding sight.

In addition to the direct results of the research, this study also sheds light on the benefits of advanced technology. By using the latest technology to record sounds, the researchers were able to observe the collective behavior of the bats. This kind of research is vital for the study of biology and behavioral ecology.

Conclusion

From these examples, it is easy to see that new findings in biology are important for scientific advancement. Biology is vitally important for carrying out experiments in ecological research, medical research and environmental research. It is one of the central pillars of science. Many would also argue that it is the most fundamental of all scientific disciplines.

It is easy to see that we must attribute many great advancements to biological research and academic publications. Thousands of scientists have worked towards understanding the most fundamental structures of living things. Theories and hypotheses became investigations into the treatment of diseases. In many cases, these investigations led to groundbreaking discoveries in medicine.

It will be exciting to see what comes next in biological research. While these current events in biology are exciting, they are just paving the way for even greater discoveries.

0/5 (0 Reviews)
About the author Taylor Bauer
Taylor is a writer and SEO manager with a B.S. in Political Communication from Illinois State University. He also received his M.S. in Communications from Illinois State. His background comes from journalism, working at an NPR member station for 3 years before transitioning to blogging and search engine marketing. He lives in Illinois with his wife and two Toy Australian Sheppards.

Reply